Gaussian sum particle filtering for dynamic state space models

نویسندگان

  • Jayesh H. Kotecha
  • Petar M. Djuric
چکیده

For dynamic systems, sequential Bayesian estimation requires updating of the filtering and predictive densities. For nonlinear and non-Gaussian models, sequential updating is not as straightforward as in the linear Gaussian model. In this paper, densities are approximated as finite mixture models as is done in the Gaussian sum filter. A novel method is presented, whereby sequential updating of the filtering and posterior densities is performed by particle based sampling methods. The filtering method has combined advantages of Gaussian sum and particle based filters and simulations show that the presented filter can outperform both methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian sum particle filtering

In this paper, we use the Gaussian particle filter introduced in a companion paper to build several types of Gaussian sum particle filters. These filters approximate the filtering and predictive distributions by weighted Gaussian mixtures and are basically banks of Gaussian particle filters. Then, we extend the use of Gaussian particle filters and Gaussian sum particle filters to dynamic state ...

متن کامل

Multi-user Detection Based on Gaussian Sum Particle Filter in Impulsive Noise

In order to improve the performance of multi-user detector, this paper analyses a new algorithm, Gaussian sum particle filter (GSPF). This algorithm approximates the filtering and predictive distributions by weighted Gaussian mixtures and is basically banks of Gaussian particle filters (GPF). Then, GSPF is used in dynamic state space (DSS) models with non-Gaussian noise. The non-Gaussian noise ...

متن کامل

GP-SUM. Gaussian Processes Filtering of non-Gaussian Beliefs

This work studies the problem of stochastic dynamic filtering and state propagation with complex beliefs. The main contribution is GP-SUM, a filtering algorithm tailored to dynamic systems and observation models expressed as Gaussian processes (GP), that does not rely on linearizations or unimodal Gaussian approximations of the belief. The algorithm can be seen as a combination of a sampling-ba...

متن کامل

Gaussian particle filtering

Sequential Bayesian estimation for nonlinear dynamic state-space models involves recursive estimation of filtering and predictive distributions of unobserved time varying signals based on noisy observations. This paper introduces a new filter called the Gaussian particle filter1. It is based on the particle filtering concept, and it approximates the posterior distributions by single Gaussians, ...

متن کامل

Rao-Blackwellised Particle Filtering for Fault Diagnosis

We tackle the fault diagnosis problem using conditionally Gaussian state space models and an efficient Monte Carlo method known as Rao-Blackwellised particle filtering. In this setting, there is one different linearGaussian state space model for each possible discrete state of operation. The task of diagnosis is to identify the discrete state of operation using the continuous measurements corru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001